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Abstract. We present analytical expressions for the dynamic structure factor, or form factor S(k, ®),
which is the quantity describing the inelastic x-ray cross section from a dense plasma or a simple
liquid. Our results, based on the random phase approximation (RPA) for the treatment on the
charged particle coupling, can be applied to describe scattering from either weakly coupled classical
plasmas or degenerate electron liquids. Our form factor correctly reproduces the Compton energy
downshift and the usual Fermi-Dirac electron velocity distribution for S(k, ®) in the case of a cold
degenerate plasma. The results shown in this work can be applied to interpreting x-ray scattering in
warm dense plasmas occurring in inertial confinement fusion experiments. We show that electron
density, electron temperature and ionization state can be directly inferred from such measurements.
Specifically, we present as an example, use the results of experiments performed at the Vulcan laser
facility at the Rutherford Appleton Laboratories (UK) on a LiH target.

1. INTRODUCTION

Diagnostics of dense plasmas poses several difficulties as currently adopted experimen-
tal techniques are rather limited in probing particle densities, temperatures and charge
states of warm dense matter. Optical techniques, for example, can only provide infor-
mation on surface layers of dense plasmas since they are opaque to visible or UV light.
On the other hand, the emerging interest in understanding the properties of matter under
extreme conditions, as the ones achieved in inertial confinement fusion (ICF) experi-
ments {1], necessitates the developing of finite temperature dense matter probes. In ICF
implosion experiments a variety of plasma regimes are created, and of particular inter-
est are Fermi degenerate (or quantum) plasmas, characterized by a Fermi temperature
greater than the electron kinetic temperature. Moreover, equation of state (EOS) predic-
tions for various degenerate plasmas can only be resolved by accurate measurements of
the chemical state of the materials. However, uncertainties in the present data and the
lack of reliable independent measurements of temperature and density have made the
validation of current models and calculations difficult.

We investigate the possibility of extending spectrally resolved Thomson scattering [2]
in the x-ray regime for the diagnostics of solid density plasmas. This method was first
discussed by Landen et al. [3] as a viable diagnostics alternative in ICF experiments. In
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Ref. [3], calculations were presented for scattering parameters o = 1/kA;, < 1, where
Ap is the Debye length and k = k;, — k is the difference between the wave-number of the
scattered and the incident probe radiation. In the present work, we provide a theoretical
expression for the scattering form factor to represent x-ray Thomson scattering for
arbitrary o parameter. In addition, our treatment can be applied in the description of
scattering from degenerate to weakly coupled plasmas. For plasmas obeying the classical
statistics, the electron-electron coupling constant is defined as (see, e.g., Ichimaru [4])
" = ¢?/4neykpT,d, where T, is the electron temperature and d = (3/ 41tn,)' /3 the ion-
sphere radius, with n, the electron density. In other words, IT" is the ratio between the
potential and the kinetic energy of the electrons. For coupling between different charged
particles, we also need to account for the ionization state of the material.

In an ideal plasma, I' < 1 and the kinetic energy dominates the particle motion
with negligible inter-particle coupling, while in a strongly coupled plasma, T >> 1,
the electrostatic (Coulomb) forces determine the nature of the particle motion. Weakly
coupled plasmas lie in the range I'S1. The extension of definition of the coupling
constant I" to the quantum domain (i.e., a degenerate plasma) is discussed by Liboff
[5]. In this case, quantum diffraction prevents the electrons to get arbitrarily close to
each other and I" is now the ratio between the potential and the Fermi energy, E, of the
electrons. Having £ :iiz(?ﬂrzne)z/ 3 /2m,, as electron density increases, in contrast to a

classical plasma, the coupling constant decreases, since ' =T, = e?/ dngyEpd ~ ne_l/ 3,

2. THEORY

2.1. Basic definitions

We are interested in describing the scattering from a uniform plasma containing N
ions per unit volume. If Z, is the nuclear charge of the ion, the total number of electrons
per unit volume in the system, including free and bound ones, is Z,N. Let us now
assume we probe such a system with x-rays of frequency @, such thatficoy, > E;, with
E; the ionization energy of any bound electron, i.e., the incident frequency must be large
compared to any natural absorption frequency of the scattering atom, which allows us
to neglect photoabsorption. During the scattering process, the incident photon transfers
momentum /ik and energy i =hA%k?/2m, =hwy —hw, to the electron, where @, is the
frequency of the scattered radiation. Under these conditions we can distinguish between
electrons that are kinematically free with respect to the scattering process and core
electrons that are tightly bound to the atom. If a,, is the orbital radius of the electron
with principal quantum number 7, kinematically free electrons satisfy the relation [6, 7]
ka,21 (in the hydrogenic approximation, a, ~ azn®/Z, with ap = 47:8(ﬁ2/mee2 the
Bohr radius), while the opposite inequality applies for core electrons. This condition
is equivalent to assuming thatZ®, the energy transferred to the electron by Compton
scattering, is larger than its binding energy. In the non-relativistic limit ¢ze» < Ai,)

k= lkfzf;ﬁsin(e/z), (0
0
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with A the probe wavelength and 8 the scattering angle. We denote with Z g and Z. the
number of kinematically free and core electrons, respectively. Clearly, Z, = Z - +Z.
To avoid possible confusions, we should stress that Z, is conceptually different from
the true ionization state of the atom. It includes both the truly free (removed from
the atom by ionization) and the valence (weakly bound) electrons; thus Z = Z+Z,,
where Z is the number of electrons removed from the atom, and Z, is the number of
valence electrons. In the limiting case of a liquid metal, Z = 0, and only the valence (or
conduction) electrons need to be considered.

2.2. Scattering cross section

Following the approach of Chihara [8, 9] the scattering cross section is described in
terms of the dynamic structure factor of all the electrons in the plasma
d*c k

_.k 2
dQdw GTkOS(k’a’)’ @

where o is the usual Thomson cross section and S(k, @) is the total dynamic structure
factor defined as

1 .
S(k, @) = o= [ € pell)pel—k 0))r, o)
with {...) denoting a thermal average and
Z,N
pe(le,1) = 3 explik-rs(1)], @)
s=1

is the Fourier transform of the total electron density distribution, with ry(z) the time
dependent position vector of the s-th electron. Assuming the system is isotropic, as
in the case of interest here (liquid metals or plasmas), the dynamic structure factor
depends only on the magnitude of k, not on its direction. The next step consists in
separating the total density fluctuation, Eq. (4), between the free (Z f) and core (Z;)
electron contributions, and separating the motion of the electrons from the motion of the
ions. The details of procedure are given by Chihara [8, 9], thus obtaining for the dynamic
structure:

S(k, @) = | £,(k) +q(k)[*S;(k, ) + Z,Se, (k, ) + Z, / See(k, 0 — @) Ss(k, 0"da'. (5)

The first term in Eq. (5) accounts for the density correlations of electrons that dynami-
cally follow the ion motion. This includes both the core electrons, represented by the ion
form factor f;(k), and the screening cloud of free (and valence) electrons that surround
the ion, represented by g(k) [10]. S;;(k, ®) is the ion-ion density correlation function.
The second term in Eq. (5) gives the contribution in the scattering from the free elec-
trons that do not follow the ion motion. Here, S9,(k, ) is the high frequency part of the
electron-electron correlation function [11] and it reduces to the usual electron feature
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(12, 13] in the case of an optical probe. Inelastic scattering by core electrons is included
in the last term of Eq. (5), which arises from Raman transitions to the continuum of
core electrons within an ion, S (k, @), modulated by the self-motion of the ions, repre-
sented by S;(k, ®). We point out that in Eq. (5) electron-ion correlations are implicitly
accounted in the first term, since, as shown by Chihara [8], the electron-ion response
function can be written in terms of the ion-ion response function. We observe that the
total density correlation function must obey the relation [14]

S(k, —) = exp(~fi/kyT,)S(k, ), )

which is a consequence of detail balance. This gives rise to asymmetry in the spectrum
as we will discuss further in the next sections.

The ion-ion correlations reflect the thermal motion of the ions and/or the ion plasma
frequency, and since we cannot currently experimentally access this low frequency
part of the spectrum, we can approximate S;(k,®) = S;;(k)6(®). We thus only need
to calculate the static structure factor for ion-ion correlations. We shall also observe
that for typical conditions in dense plasmas for ICF experiments, the ions are always
non-degenerate, since their thermal de Broglie wavelength is much smaller than the
average interparticle distance. On the other hand, the electrons can exhibit some degree
of degeneracy, and in the case of very cold and dense plasmas, they will obey the
Fermi-Dirac distribution. Under these conditions, and within the framework of the
random phase approximation (RPA), we can calculate S;;(k) using the semi-classical
approach suggested by Arkhipov and Davletov [15], which is based on a pseudo-
potential model for the interaction between charged particles to account for quantum
diffraction effects (i.e., the Pauli exclusion principle) and symmetry [16]. The correlation
function is then calculated at the effective temperature 7, ~ (T2 + TqZ)l/ 2, where T, =
T /(1.3251 — 0.1779,/ry), with ry = d/ag. From quantum Monte Carlo calculations
this corrected temperature was shown [17] to reproduce the exact quantum statistics at
kinetic temperatures well below the Fermi temperature (T, < Ty).

The free electron density-density correlation function that appears in the second term
of Eq. (5) can be formally obtained through the fluctuation-dissipation theorem [18]:

S0 (k) = — i S o
TV L —exp(~ho/kyT,) me?n, | e(k, )]’

where £(k, ) is the electron dielectric response function. In the case of an ideal classical
plasma, the plasma dielectric response is evaluated from a perturbation expansion of the
Vlasov equation [19]. The resultant form for the density correlation function is then
known as the Salpeter electron feature [12]. This approach, however, fails when the
electrons become degenerate or nearly degenerate as quantum effects begin to dominate.
Under the assumption that interparticle interactions are weak, so that the nonlinear
interaction between different density fluctuations is negligible, the dielectric function
can be derived in the random phase approximation (RPA) [20, 21]. In the classical limit,
it reduces to the usual Vlasov equation.

We shall stress the point that in the limit of the RPA, strong coupling effects are not
accounted for, thus limiting the model validity to plasma conditions in the range I" ~ 1.
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FIGURE 1. Free electron dynamic structure S2,(k, @) for n, = 1.0 x 10%* cm™3 at 7, = 1 eV (a) and
T, = 10 eV (b). The probe radiation is A, = 0.26 nm and the scattering angle is 8 = 160°, and o = 0.40
(a) or & = 0.29 (b).

Use of the RPA at larger couplings may still provide fairly accurate results if kd>1
[22, 23]. In the cases studied here, the plasma are within the range of validity. However,
extensions to strong coupling are possible in terms of a local field correction [24] of
the dielectric response functions, but they are significantly more complex and can be
obtained only through the solution of the hypernetted chain (HNC) equation [25] or
molecular dynamics simulations [26].

In Fig. 1 we have plotted normalized line profiles of S, (k, w) calculated assuming
incident x-rays with 4, = 0.26 nm, corresponding to the Ti He-a 4.75 keV emission line,
and a scattering angle of 8 = 160°. The various models compared with the RPA in Fig.
1 are the analytical Lindhard-Sommerfeld theory [21], which is exact for T, = 0 eV, the
classical Salpeter form factor, and the calculations of Landen ez al. [3] which is a direct
representation of the electron distribution function. We observe that the RPA calculation
automatically includes the effect of the Compton energy downshift in the scattered
spectrum. This is not true, for example, in the Salpeter and Landen approximations since
momentum transfer from the photons to the electrons is neglected there. Thus, in order
to compare with the RPA, we need to translate the entire line profile an amount that
corresponds to a shift of i%k?/2m, in energy. At a density of n, = 1.0 x 102 cm ™3, the
Fermi temperature is 7T, = 7.85 eV. We indeed see that, at temperatures lower than 77,
when quantum effects are important, the Salpeter result deviates from the RPA one. On
the other hand, at 7, = 10 eV (T, > T), the Salpeter formula agrees very well with the
RPA since now the kinetic temperature is comparable with 7. From Fig. 1 we also see
that at 7, = 1 eV the calculated profile of SO, (k, @) is parabolic, while at 7, = 10 eV the
profile is Gaussian. The transition from a parabolic to a Gaussian profile, as the electron
temperature is raised, corresponds to the transition from Fermi to Boltzmann statistics
in the electron velocity distribution.

It is customary to describe scattering processes in terms of the parameter o = 1/ks,
where s is the characteristic screening length of the electrostatic interactions. For a

363

Downloaded 01 Feb 2008 to 128.115.27.10. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp



Soee(k,m) (arb. units)

T T T T R]PA T T T T T RIPA T
r @ i Lindhard ------ 7 T ® 7R+ Lindhard ——-—- .
Salpster ------- . Salpeter
08 | 4 . o8f i ‘
2
=
=]
o 06
s
S oar
3
Dw
? o2}
o
1 1 1 1 1 1 1 1 ] 1 1 1
-60 -40 -20 0 20 40 -60 -40 -20 0 20 40
Energy shift (eV) Energy shift (eV)

FIGURE 2. Free electron dynamic structure S9,(k, @) for n, = 1.0 x 102 cm™3 at T, = 1 eV (a) and
T, = 10 eV (b). The probe radiation is A, = 0.78 nm and the scattering angle is 6 = 160°, and & = 1.17
(a) or ¢ = 0.85 (b).

classical plasma s coincides with the Debye length Ap,. If @ < 1 the electrons behave as
uncorrelated scatters, while for large o parameters the scattering reflects their collective
motion. In a classical plasma o ~ (T, /ne)l/ 2, and the nature of the scattering depends
on both the electron temperature and the electron density. As the plasma becomes
degenerate, the Debye length does not represent anymore the screening of the Coulomb
forces. However, the classical results are still valid if, instead of using the kinetic
temperature, they are evaluated at the effective temperature T, [17]. Fig. 4 shows
o = const contours in the 7,-n, plane for typical experimental conditions. We see that
in the case of an ideal (r; — 0) degenerate electron liquid this approximation yields

s ~ App, where A, = 1/2€,ER/3n.€? is the Thomas-Fermi screening length. Thus,

o~ ne“l/ 6 and the type of scattering (uncorrelated or collective) is independent of 7T,

and weakly dependent on the electron density. The collective nature of the scattering
can thus be investigated by only changing the wavelength of the probe x-ray.

Dynamic structures for collective scattering (i.e., large « parameters) are shown in
Fig. 2, which correspond to a longer probe radiation of wavelength 4, = 0.78 nm (Al
He-a 1.6 keV emission line), all the other conditions being the same as in Fig. 1. In both
Figs. 1 and 2 we see the strong asymmetry in the line profiles resulting from the detail
balance relation (6).

The last term in Eq. (5) corresponds to the density correlations of the tightly bound
electrons within each single ion, and it arises from electron-hole and bound excitations
of the inner core electrons. The Fermi golden rule in the first order perturbation theory
can be used to calculate the spectrum resulting from electron-hole excitations [27, 28].
As discussed by Mizuno and Omura [7] inner core electrons can be excited by the probe
radiation to continuum states and the corresponding spectrum of the scattered radiation
is that of a Raman-type band. Since the Raman band has width comparable or larger
than the Compton band [29], we can regard this type of contribution as yielding only a
small background [27]. This seems consistent with the results presented by Glenzer [30]
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on x-ray scattering from moderately heated beryllium targets.

3. THOMSON SCATTERING PROFILES: COMPARISON WITH
EXPERIMENTS

Based on the theory outlined in the previous sections, we are now able to calculate the
full Thomson scattering profile for x-ray probes at arbitrary scattering angle, for either
classical or quantum plasmas. The only limitation is that the degree of coupling must not
be too large to invalidate the limits of the RPA. We have obtained synthetic line profiles
for the Ti He-ax 4.75 keV radiation probe at 8 = 160° scattering angle. In addition,
we have assumed that the probe material consists of LiH (Z, = 4) at T, = 1 eV and at
various compressed densities. To simulate actual experimental data, the theoretical line
profile from Eq. (5) has been convoluted with a Gaussian instrument function with 40 eV
FWHM. From Fig. 3 we can see that synthetic line profiles tend to be fairly similar since
the broadening of the Compton profile goes as \/ﬁ ~ n;/ 3. The effect of the ionization
state on the line profiles can also be seen in Fig. 3. Here, we have plotted synthetic
lineshapes for different values of Z - (or Z,) with n, = 1.0 x 10?3 ¢cm ™3 (Tp =7.85¢V)
and T, = 1 eV or T, = 10 eV. We see dramatic differences in the simulated lineshapes
for the various Z,. This effect then suggests that x-ray Thomson scattering can also be
implemented as a diagnostics tool for the ionization state of solid density plasmas based
on the difference in the intensity between the unshifted and the Compton shifted peaks.
This possibility was suggested by Landen et al. [3] since current optical techniques
cannot directly measure the number of free electrons in solid density plasmas, and it
extends the ionization state measurements based on visible light Thomson scattering
[31]. On the other hand, the ratio of the scattered intensities between the shifted and the
unshifted peaks is only sensitive to Z g which is not the same as Z, the true ionization state
of the material. The measure of Z ¢ will thus only provide an upper bound to Z, unless
the number of valence electrons can be calculated or determined by other techniques.
Preliminary data obtained from a LiH target, with initial density of 0.77 g/cc, probed
at the Vulcan laser facility at the Rutherford Appleton Laboratory with Ti He-o 4.75
keV x-rays have been compared with our theoretical model. The initial ion density is
thus n) = 5.8 x 10?2 cm™>. The LiH target has been shocked and heated with two beams
with approximate energy of 50 J/beam at 2, and 1 ns pulsewidth. X-ray line radiation
has been generated by the interaction of a 110 J, 0.6 ns pulsewidth, 2@ laser beam on
a Ti foil. The probe beam has been delayed 0.8 ns with respect to the heater beams. By
shielding the view of the LiH target with 50 um thick Au foils, a scattering angle of 160°
can be selected. The scattering data have been collected using a mosaic HOPG (graphite)
crystal used in focus mode in order to achieve high resolution and efficiency. The crystal
was positioned 7.5 cm from the LiH target and the data were collected on an x-ray CCD
camera 15 cm from the target. Comparison between the experimental line profile and the
theoretical ones, convoluted with an instrument function of 30 eV FWHM, are shown
in Fig. 4. We have n, ~ 1.8 £0.6 x 10> cm ™3 (T = 12.5 eV) and T, ~ 0-5 eV, with
Zf =3.2+0.1. From Fig. 4, we see that typical error in the density fit is of the order of
30%, which is to be expected for preliminary quality data. These values corresponds to
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FIGURE 3. Synthetic dynamic structure S(k, @) calculated for LiH target (Z, =4) at T, = 1 eV and
T, = 10 eV. The probe radiation is A;, = 0.26 nm and scattering angle 6 = 160°.

a compression ratio y = n, /Z n ~ 0.6-1.4. The theory reproduces sufficiently well the
measured profile, suggesting that the analysis reported here may be fairly adequate in
describing the scattering process. Also, measurement of the number of free (and bound)
electrons can be performed directly from the experimental data. The temperature-density
domain of interest for typical experimental conditions is also shown in Fig. 4. From the
fitting results, we see that the Vulcan experiment lies on the line where the o parameter
changes its slope, which corresponds, as we have previously discussed, to a change from
the classical Debye screening to the Thomas-Fermi screening.

4. SUMMARY AND CONCLUDING REMARKS

In this paper we have presented analytical expressions for the inelastic x-ray form factor
that can be easily applied to interpreting scattering experiments in solid and super-solid
density degenerate-to-hot plasmas. We have shown that x-ray Thomson scattering can be
used as an effective diagnostic technique in plasmas produced under extreme conditions
as the ones occurring in ICF experiments or to simulate scattering conditions found
in the interiors of planets. This new technique will be useful, for example, to directly
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FIGURE 4. Left: calculated o = const contours for A, = 0.26 nm and 8 = 160°. The line 7, = T} is
also plotted in figure. Right: preliminary experimental scattering profile from LiH target obtained with a
probe radiation A; = 0.26 nm and at a scattering angle of @ = 160°. Fitting parameters are given in the
figure.

measure the electron temperature, ionization state or electron conductivity for EOS
model validation.

Preliminary comparison with experiments conducted at the Vulcan laser facility on
LiH targets have showns fair agreement between the model discussed in this paper and
the experimental data, suggesting that x-ray Thomson scattering can be implemented as
a viable diagnostics for low Z solid density plasmas.
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